Search results for "mixed hybrid finite element"

showing 4 items of 4 documents

Comparison between the MHFEM formulation and a 2nd spatial order FV formulation of the linear groundwater flow problem

2008

Mixed and Mixed Hybrid Finite Elements (MHFE) methods have been widely used in the last decade for simulation of groundwater flow problem, petroleum reservoir problems, potential flow problems, etc. The main advantage of these methods is that, unlike the classical Galerkin approach, they guarantee local and global mass balance, as well the flux continuity between inter-element sides. The simple shape of the control volume, where the mass conservation is satisfied, makes also easier to couple this technique with a Finite Volume technique in the time splitting approach for the solution of advection-dispersion problems. In the present paper a new second spatial approximation order Finite Volum…

finite volumes methodmixed hybrid finite elements methodM-propertyfinite elements methodRaviart-Thomas basis functionGroundwaterpositive-definite matrixSettore ICAR/01 - Idraulica
researchProduct

MAST-RT0 solution of the incompressible Navier–Stokes equations in 3D complex domains

2020

A new numerical methodology to solve the 3D Navier-Stokes equations for incompressible fluids within complex boundaries and unstructured body-fitted tetrahedral mesh is presented and validated with three literature and one real-case tests. We apply a fractional time step procedure where a predictor and a corrector problem are sequentially solved. The predictor step is solved applying the MAST (Marching in Space and Time) procedure, which explicitly handles the non-linear terms in the momentum equations, allowing numerical stability for Courant number greater than one. Correction steps are solved by a Mixed Hybrid Finite Elements discretization that assumes positive distances among tetrahedr…

General Computer Scienceeulerian methodMathematics::Analysis of PDEspredictor–corrector scheme02 engineering and technology01 natural sciencesnavier–stokes equationsSettore ICAR/01 - Idraulica010305 fluids & plasmasNumerical methodologyPhysics::Fluid Dynamics0203 mechanical engineeringNavier–Stokes equations 3D numerical model Eulerian method unstructured tetrahedral mesh predictor–corrector scheme Mixed Hybrid Finite elementIncompressible flow0103 physical sciencesNavier–Stokes equationsPhysicsMathematical analysisEulerian methodunstructured tetrahedral meshEngineering (General). Civil engineering (General)3d numerical modelTetrahedral meshes020303 mechanical engineering & transportsmixed hybrid finite elementModeling and SimulationCompressibilityTA1-2040Engineering Applications of Computational Fluid Mechanics
researchProduct

Comparison of different 2nd order formulations for the solution of the 2D groundwater flow problem over irregular triangular meshes

2009

Mixed and Mixed Hybrid Finite Elements (MHFE) methods have been widely used in the last decade for simulation of groundwater flow problem, petroleum reservoir problems, potential flow problems, etc. The main advantage of these methods is that, unlike the classical Galerkin approach, they guarantee local and global mass balance, as well the flux continuity between inter-element sides. The simple shape of the control volume, where the mass conservation is satisfied, makes also easier to couple this technique with a Finite Volume technique in the time splitting approach for the solution of advection-dispersion problems. In the present paper, a new MHFE formulation is proposed for the solution …

groundwater finite elements method mixed hybrid finite elements method finite volumes method positive-definite matrix M-property Raviart-Thomas basis functionSettore ICAR/01 - Idraulica
researchProduct

Comparison between the MHFEM formulation and a 2nd spatial order FV formulation of the linear ground problem

2008

groundwater finite elements method mixed hybrid finite elements method finite volumes method positive-definite matrix M-property Raviart-Thomas basis function
researchProduct